5 research outputs found

    A Homomorphic Encryption Framework for Privacy-Preserving Spiking Neural Networks

    Get PDF
    Machine learning (ML) is widely used today, especially through deep neural networks (DNNs); however, increasing computational load and resource requirements have led to cloud-based solutions. To address this problem, a new generation of networks has emerged called spiking neural networks (SNNs), which mimic the behavior of the human brain to improve efficiency and reduce energy consumption. These networks often process large amounts of sensitive information, such as confidential data, and thus privacy issues arise. Homomorphic encryption (HE) offers a solution, allowing calculations to be performed on encrypted data without decrypting them. This research compares traditional DNNs and SNNs using the Brakerski/Fan-Vercauteren (BFV) encryption scheme. The LeNet-5 and AlexNet models, widely-used convolutional architectures, are used for both DNN and SNN models based on their respective architectures, and the networks are trained and compared using the FashionMNIST dataset. The results show that SNNs using HE achieve up to 40% higher accuracy than DNNs for low values of the plaintext modulus t, although their execution time is longer due to their time-coding nature with multiple time steps

    Statins reduce intratumor cholesterol affecting adrenocortical cancer growth

    Get PDF
    Mitotane causes hypercholesterolemia in ACC patients. We suppose that cholesterol increases within the tumor and can be used to activate proliferative pathways. In this study, we used statins to decrease intratumor cholesterol and investigated the effects on ACC growth related to ER\u3b1 action at the nuclear and mitochondrial levels. We first used microarray to investigate mitotane effect on genes involved in cholesterol homeostasis and evaluated their relationship with patients' survival in ACC TCGA. We then blocked cholesterol synthesis with simvastatin and determined the effects on H295R cell proliferation, estradiol production and ER\u3b1 activity in vitro and in xenograft tumors. We found that mitotane increases intratumor cholesterol content and expression of genes involved in cholesterol homeostasis, among them INSIG, whose expression affects patients' survival. Treatment of H295R cells with simvastatin to block cholesterol synthesis decreased cellular cholesterol content and this affected cell viability. Simvastatin reduced estradiol production and decreased nuclear and mitochondrial ER\u3b1 function. A mitochondrial target of ER\u3b1, the respiratory complex IV (COX IV) was reduced after simvastatin treatment, which profoundly affected mitochondrial respiration activating apoptosis. In vivo experiments confirmed the ability of simvastatin to reduce tumor volume and weight of grafted H295R cells, intratumor cholesterol content, Ki-67 and ER\u3b1, COX IV expression and activity and increase TUNEL positive cells. Collectively these data demonstrate that a reduction in intratumor cholesterol content prevents estradiol production, inhibits mitochondrial respiratory chain inducing apoptosis in ACC cells. Inhibition of mitochondrial respiration by simvastatin represents a novel strategy to counteract ACC growth

    Aging and Activity Tolerance

    No full text
    corecore